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Elements of this syllabus are subject to change. 

About this course 
Ada is a powerful and extensive programming language well suited for large 
projects. It has safety features which designed to minimise the occurrence 
of common programming errors, allowing complex software to be 
developed with more confidence. It is used extensively by the military and 
defence organisations, and other large organisations such as those in the 
banking sector. 

At Course Completion 
After completing this course, students will be able to: 
 

• Understand the design goals of the language 

• Write and understand moderately complex Ada programs 

• Select and design appropriate data types 

• Utilise the Ada tasking features 

• Write and use generic Ada units 

Prerequisites 
The student should have some programming experience. 
 
 

Course Details 

Course Code: PGA-101 

Duration: 5 days 

Notes: 

• This course syllabus should be 
used to determine whether 
the course is appropriate for 
the students, based on their 
current skills and technical 
training needs.  

• Course content, prices, and 
availability are subject to 
change without notice. 

• Terms and Conditions apply 
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